Multi-Agent System¤
Overview¤
The Multi-Agent System provides intelligent orchestration of specialized AI agents, each optimized for specific domains such as entertainment, support, and general assistance. The system includes sophisticated goal-seeking capabilities, proactive messaging, conversation continuity, and intelligent agent handoffs to create seamless user experiences.
Architecture¤
graph TB
subgraph "Multi-Agent System Architecture"
Input[User Message] --> AgentService[Agent Service]
subgraph "Core Orchestration"
AgentService --> Classifier[Message Classifier]
AgentService --> GoalSeeker[Goal-Seeking System]
AgentService --> ConversationMgr[Conversation Manager]
AgentService --> ValidationSvc[Response Validator]
end
subgraph "Agent Classification"
Classifier --> GeneralAgent[General Assistant<br/>🤖 General conversation]
Classifier --> JokeAgent[Adaptive Joke Master<br/>😄 Learning humor]
Classifier --> TriviaAgent[Trivia Master<br/>🧠 Knowledge sharing]
Classifier --> GIFAgent[GIF Master<br/>🎬 Visual entertainment]
Classifier --> DnDAgent[D&D Master<br/>🎲 RPG experiences]
Classifier --> SupportAgents[Support Specialists<br/>🎧 Customer service]
end
subgraph "Processing Pipeline"
GeneralAgent --> OpenAI[OpenAI API<br/>GPT-4 Integration]
JokeAgent --> OpenAI
TriviaAgent --> OpenAI
GIFAgent --> OpenAI
DnDAgent --> OpenAI
SupportAgents --> OpenAI
OpenAI --> RAGService[RAG Service<br/>Curated content fallback]
RAGService --> ResponseGen[Response Generation]
ResponseGen --> ValidationSvc
end
subgraph "Advanced Features"
GoalSeeker --> ProactiveActions[Proactive Actions<br/>🎯 Goal-driven messaging]
ConversationMgr --> AgentHandoffs[Smart Agent Handoffs<br/>🔄 Context-aware transitions]
ValidationSvc --> QualityScoring[Quality Scoring<br/>📊 Response validation]
end
subgraph "Output & Monitoring"
ProactiveActions --> SocketHandler[Socket Handler]
AgentHandoffs --> SocketHandler
QualityScoring --> UserResponse[User Response]
UserResponse --> Metrics[Prometheus Metrics]
UserResponse --> Tracing[OpenTelemetry Traces]
end
end
classDef service fill:#e1f5fe,stroke:#01579b,color:#000
classDef data fill:#e8f5e8,stroke:#2e7d32,color:#000
classDef external fill:#fff3e0,stroke:#ef6c00,color:#000
classDef agent fill:#f3e5f5,stroke:#7b1fa2,color:#000
classDef feature fill:#e8eaf6,stroke:#3f51b5,color:#000
class AgentService,Classifier,GoalSeeker,ConversationMgr,ValidationSvc service
class RAGService,ResponseGen,Metrics,Tracing data
class Input,OpenAI,SocketHandler external
class GeneralAgent,JokeAgent,TriviaAgent,GIFAgent,DnDAgent,SupportAgents agent
class ProactiveActions,AgentHandoffs,QualityScoring feature
Agent Classification System¤
sequenceDiagram
participant User as User
participant Service as Agent Service
participant Classifier as Message Classifier
participant OpenAI as OpenAI API
participant Agent as Selected Agent
participant Validator as Response Validator
User->>+Service: Send message
Note over Service: Classification Phase
Service->>+Classifier: classifyMessage(message)
Classifier->>+OpenAI: Analyze message intent
OpenAI-->>-Classifier: Classification result
Classifier-->>-Service: {agentType, confidence, reasoning}
Note over Service: Agent Selection & Processing
Service->>Service: Get agent configuration
Service->>Service: Prepare conversation context
Service->>+Agent: Process with specialized prompt
Agent->>+OpenAI: Generate response
OpenAI-->>-Agent: AI response
Agent-->>-Service: Processed response
Note over Service: Quality Assurance
Service->>+Validator: validateResponse()
Validator-->>-Service: Validation result
alt High-severity issues detected
Service->>Service: Apply fallback strategy
else Validation passed
Service->>Service: Process normally
end
Service-->>-User: Final response with agent metadata
Note over User,Validator: Confidence & Metrics Logged
Goal-Seeking System¤
graph TB
subgraph "Goal-Seeking Architecture"
UserMessage[User Message] --> StateUpdater[User State Updater]
subgraph "Goal Management"
StateUpdater --> GoalActivator[Goal Activator]
GoalActivator --> EntertainmentGoal[Entertainment Goals<br/>🎭 Engagement & fun]
GoalActivator --> SupportGoal[Support Goals<br/>🎧 Problem resolution]
GoalActivator --> EngagementGoal[Engagement Goals<br/>💬 Conversation continuity]
end
subgraph "Proactive Action Generation"
EntertainmentGoal --> ActionGen[Action Generator]
SupportGoal --> ActionGen
EngagementGoal --> ActionGen
ActionGen --> ImmediateActions[Immediate Actions<br/>⚡ Real-time responses]
ActionGen --> DelayedActions[Delayed Actions<br/>⏱️ Scheduled follow-ups]
ActionGen --> ConditionalActions[Conditional Actions<br/>🎯 Context-triggered]
end
subgraph "Single-Agent Control"
ImmediateActions --> ActiveCheck{Agent<br/>Active?}
DelayedActions --> ActiveCheck
ConditionalActions --> ActiveCheck
ActiveCheck -->|Yes| ActionQueue[Action Queue<br/>📋 Pending actions]
ActiveCheck -->|No| Execute[Execute Action<br/>✅ Agent activation]
end
subgraph "Action Types"
Execute --> TechCheck[Technical Check<br/>🔧 Follow-up support]
Execute --> EntertainOffer[Entertainment Offer<br/>🎪 Fun suggestions]
Execute --> StatusUpdate[Status Update<br/>📊 Progress reports]
Execute --> AgentSwitch[Agent Switch<br/>🔄 Context handoff]
end
subgraph "Feedback Loop"
TechCheck --> ProgressUpdate[Goal Progress Update]
EntertainOffer --> ProgressUpdate
StatusUpdate --> ProgressUpdate
AgentSwitch --> ProgressUpdate
ProgressUpdate --> StateUpdater
end
end
classDef service fill:#e1f5fe,stroke:#01579b,color:#000
classDef data fill:#e8f5e8,stroke:#2e7d32,color:#000
classDef external fill:#fff3e0,stroke:#ef6c00,color:#000
classDef goal fill:#f3e5f5,stroke:#7b1fa2,color:#000
classDef action fill:#e8eaf6,stroke:#3f51b5,color:#000
class StateUpdater,GoalActivator,ActionGen,ActiveCheck,Execute,ProgressUpdate service
class ActionQueue,TechCheck,EntertainOffer,StatusUpdate,AgentSwitch data
class UserMessage external
class EntertainmentGoal,SupportGoal,EngagementGoal goal
class ImmediateActions,DelayedActions,ConditionalActions action
Conversation Management & Agent Handoffs¤
sequenceDiagram
participant User as User
participant ConvMgr as Conversation Manager
participant CurrentAgent as Current Agent
participant Handoff as Handoff System
participant TargetAgent as Target Agent
User->>+ConvMgr: Send message
Note over ConvMgr: Context Analysis
ConvMgr->>ConvMgr: Get conversation context
ConvMgr->>ConvMgr: Analyze handoff triggers
alt Handoff Required
Note over ConvMgr,Handoff: Intelligent Handoff
ConvMgr->>+Handoff: Initiate handoff process
Handoff->>Handoff: Determine target agent
Handoff->>Handoff: Generate transition message
Handoff-->>-ConvMgr: Handoff information
ConvMgr->>+TargetAgent: Process with new agent
TargetAgent->>TargetAgent: Apply specialized context
TargetAgent-->>-ConvMgr: Response
ConvMgr->>ConvMgr: Update conversation context
ConvMgr-->>User: Response from target agent
else Continue Current Agent
Note over ConvMgr,CurrentAgent: Context Continuity
ConvMgr->>+CurrentAgent: Process with context
CurrentAgent->>CurrentAgent: Maintain conversation flow
CurrentAgent-->>-ConvMgr: Contextual response
ConvMgr->>ConvMgr: Update interaction history
ConvMgr-->>-User: Continuous conversation
end
Note over User,ConvMgr: Context Preserved Across Interactions
Specialized Agents¤
Entertainment Agents¤
graph TB
subgraph "Entertainment Agent Ecosystem"
UserRequest[Entertainment Request] --> Router[Agent Router]
subgraph "Core Entertainment Agents"
Router --> JokeAgent[Adaptive Joke Master<br/>😄 Learning humor system]
Router --> TriviaAgent[Trivia Master<br/>🧠 Knowledge & facts]
Router --> GIFAgent[GIF Master<br/>🎬 Visual entertainment]
Router --> DnDAgent[D&D Master<br/>🎲 RPG experiences]
end
subgraph "Specialized Features"
JokeAgent --> LearningSystem[Joke Learning System<br/>📈 Adaptive humor]
TriviaAgent --> KnowledgeBase[Curated Facts<br/>🏛️ Quality content]
GIFAgent --> VisualSearch[Visual Content<br/>🖼️ Curated GIFs]
DnDAgent --> RPGEngine[RPG Engine<br/>⚔️ Character & dice systems]
end
subgraph "Enhancement Systems"
LearningSystem --> RAGFallback[RAG Content Fallback<br/>📚 Curated responses]
KnowledgeBase --> RAGFallback
VisualSearch --> RAGFallback
RPGEngine --> RAGFallback
RAGFallback --> QualityFilter[Quality Validation<br/>✅ Response scoring]
end
subgraph "User Experience"
QualityFilter --> PersonalizedResponse[Personalized Response<br/>🎯 Tailored to user]
PersonalizedResponse --> EngagementLoop[Engagement Loop<br/>🔄 Continued interaction]
end
end
classDef service fill:#e1f5fe,stroke:#01579b,color:#000
classDef data fill:#e8f5e8,stroke:#2e7d32,color:#000
classDef external fill:#fff3e0,stroke:#ef6c00,color:#000
classDef agent fill:#f3e5f5,stroke:#7b1fa2,color:#000
classDef feature fill:#e8eaf6,stroke:#3f51b5,color:#000
class Router,QualityFilter service
class LearningSystem,KnowledgeBase,VisualSearch,RPGEngine,RAGFallback data
class UserRequest,PersonalizedResponse,EngagementLoop external
class JokeAgent,TriviaAgent,GIFAgent,DnDAgent agent
Support Agents¤
graph TB
subgraph "Support Agent Specialization"
SupportRequest[Support Request] --> SupportClassifier[Support Classifier]
subgraph "Specialized Support Agents"
SupportClassifier --> AccountAgent[Account Support<br/>👤 User authentication]
SupportClassifier --> BillingAgent[Billing Support<br/>💳 Financial matters]
SupportClassifier --> WebsiteAgent[Website Issues<br/>🌐 Technical problems]
SupportClassifier --> OperatorAgent[Customer Operator<br/>📞 General coordination]
SupportClassifier --> HoldAgent[Hold Agent<br/>⏰ Wait management]
end
subgraph "Support Capabilities"
AccountAgent --> AuthSolutions[Authentication Solutions<br/>🔐 Login & security]
BillingAgent --> PaymentSolutions[Payment Solutions<br/>💰 Billing & refunds]
WebsiteAgent --> TechSolutions[Technical Solutions<br/>⚙️ Performance & bugs]
OperatorAgent --> RoutingSolutions[Routing Solutions<br/>🎯 Issue coordination]
HoldAgent --> WaitSolutions[Wait Solutions<br/>🎵 Entertainment & updates]
end
subgraph "Escalation & Handoffs"
AuthSolutions --> EscalationLogic[Escalation Logic]
PaymentSolutions --> EscalationLogic
TechSolutions --> EscalationLogic
RoutingSolutions --> EscalationLogic
WaitSolutions --> EscalationLogic
EscalationLogic --> SmartRouting[Smart Agent Routing<br/>🧠 Intelligent handoffs]
end
subgraph "Resolution Tracking"
SmartRouting --> ResolutionTracking[Resolution Tracking<br/>📊 Issue progress]
ResolutionTracking --> SatisfactionMetrics[Satisfaction Metrics<br/>📈 Quality measurement]
end
end
classDef service fill:#e1f5fe,stroke:#01579b,color:#000
classDef data fill:#e8f5e8,stroke:#2e7d32,color:#000
classDef external fill:#fff3e0,stroke:#ef6c00,color:#000
classDef agent fill:#f3e5f5,stroke:#7b1fa2,color:#000
classDef feature fill:#e8eaf6,stroke:#3f51b5,color:#000
class SupportClassifier,EscalationLogic,SmartRouting service
class AuthSolutions,PaymentSolutions,TechSolutions,RoutingSolutions,WaitSolutions,ResolutionTracking,SatisfactionMetrics data
class SupportRequest external
class AccountAgent,BillingAgent,WebsiteAgent,OperatorAgent,HoldAgent agent
Core Components¤
Agent Service (backend/src/agents/agentService.ts
)¤
The central orchestration service that coordinates all agent interactions:
- Multi-Agent Processing: Classifies messages and routes to appropriate agents
- Goal-Seeking Integration: Manages proactive actions and user state tracking
- Conversation Continuity: Maintains context across interactions and agent handoffs
- Response Validation: Ensures quality and appropriateness of all responses
- Single-Agent Control: Prevents conflicts with queue-based action management
Message Classifier (backend/src/agents/classifier.ts
)¤
Intelligent message classification system:
- Intent Recognition: Analyzes message content to determine appropriate agent
- Confidence Scoring: Provides classification certainty for routing decisions
- Context Awareness: Considers conversation history for better classification
- Agent Specialization: Maps user intents to specialized agent capabilities
Goal-Seeking System (backend/src/agents/goalSeekingSystem.ts
)¤
Proactive engagement and goal tracking:
- User State Management: Tracks user preferences, engagement levels, and goals
- Proactive Actions: Generates contextual follow-ups and suggestions
- Goal Activation: Dynamically activates goals based on user interactions
- Progress Tracking: Monitors goal completion and adjusts strategies
Conversation Manager (backend/src/agents/conversationManager.ts
)¤
Context-aware conversation flow management:
- Context Continuity: Maintains conversation state across interactions
- Intelligent Handoffs: Seamlessly transitions between specialized agents
- Agent Memory: Preserves relevant context for each agent type
- Flow Control: Manages conversation direction and topic transitions
Agent Configuration¤
Available Agent Types¤
Agent Type | Specialization | Key Features |
---|---|---|
general |
General Assistant | Versatile conversation, general knowledge, task assistance |
joke |
Adaptive Joke Master | Learning humor system, personalized comedy, reaction tracking |
trivia |
Trivia Master | Fascinating facts, educational content, knowledge sharing |
gif |
GIF Master | Visual entertainment, curated animated content, mood enhancement |
dnd_master |
D&D Master | RPG experiences, character generation, dice rolling, storytelling |
account_support |
Account Support | Authentication, profile management, account security |
billing_support |
Billing Support | Payments, subscriptions, refunds, financial matters |
website_support |
Website Issues | Browser problems, performance issues, technical support |
operator_support |
Customer Operator | General support routing, comprehensive assistance |
hold_agent |
Hold Management | Wait time updates, entertainment during holds |
Agent Configuration Properties¤
Quality Assurance¤
Response Validation¤
All agent responses undergo comprehensive validation:
- Content Quality: Readability, appropriateness, technical accuracy
- Agent Specialization: Compliance with agent-specific requirements
- Length Validation: Appropriate response length for agent type
- Issue Detection: Automatic identification of content problems
Performance Monitoring¤
- Agent Performance: Success rates and quality scores per agent
- User Satisfaction: Engagement metrics and feedback analysis
- System Health: Response times, error rates, and availability
- Proactive Effectiveness: Success rates of proactive actions
Integration Points¤
Message Queue Integration¤
- Priority Handling: Agent responses respect message queue priorities
- Proactive Actions: Goal-seeking actions are queued with appropriate timing
- Load Management: Agent processing respects system capacity limits
Socket Communication¤
- Real-time Responses: Immediate delivery of agent responses
- Proactive Messaging: Asynchronous delivery of goal-seeking actions
- Agent Status: Real-time agent availability and activity tracking
OpenTelemetry Tracing¤
- Agent Spans: Detailed tracing of agent processing workflows
- Classification Traces: Message classification decision tracking
- Performance Metrics: Response times, error rates, and quality scores
Usage Examples¤
Basic Agent Interaction¤
Forced Agent Selection¤
Goal-Seeking with Proactive Actions¤
Conversation Management¤
Benefits¤
User Experience¤
- Specialized Expertise: Each agent optimized for specific domains
- Context Continuity: Seamless conversation flow across interactions
- Proactive Engagement: Goal-driven suggestions and follow-ups
- Intelligent Routing: Automatic selection of most appropriate agent
System Performance¤
- Quality Assurance: Comprehensive response validation and scoring
- Load Management: Single-agent control prevents resource conflicts
- Monitoring: Detailed metrics and tracing for system optimization
- Scalability: Modular architecture supports easy agent addition
Development Efficiency¤
- Modular Design: Independent agent development and testing
- Configuration-Driven: Easy agent customization and deployment
- Integration Ready: Built-in support for validation, tracing, and metrics
- Extensible Framework: Simple addition of new specialized agents
The Multi-Agent System provides a sophisticated foundation for intelligent, context-aware AI interactions that continuously improve through goal-seeking, conversation management, and comprehensive quality assurance.